sRGB↔XYZ conversion
- Posted by Michał ‘mina86’ Nazarewicz on 7th of July 2019
- Share on Bluesky
In an earlier post, I’ve shown how to calculate an RGB↔XYZ conversion matrix. It’s only natural to follow up with a code for converting between sRGB and XYZ colour spaces. While the matrix is a significant portion of the algorithm, there is one more step necessary: gamma correction.
What is gamma correction?
Human perception of light’s brightness approximates a power function of its intensity. This can be expressed as \(P = S^\alpha\) where \(P\) is the perceived brightness and \(S\) is linear intensity. \(\alpha\) has been experimentally measured to be less than one which means that people are more sensitive to changes to dark colours rather than to bright ones.
Based on that observation, colour space’s encoding can be made more efficient by using higher precision when encoding dark colours and lower when encoding bright ones. This is akin to precision of floating-point numbers scaling with value’s magnitude. In RGB systems, the role of precision scaling is done by gamma correction. When colour is captured (for example from a digital camera) it goes through gamma compression which spaces dark colours apart and packs lighter colours more densely. When displaying an image, the opposite happens and encoded value goes through gamma expansion.